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Definition
Life Cycle GHG Emissions from Crude Qil
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Well to Tank Emissions Intensity
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U.S. CCUS Costs in $/tonne CO,,
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Tm x2

A Sobering Pore Space Reality
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EOR+ LCA System Boundaries
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Cradle-to-grave system boundary
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Gate-to-grave system boundary

Life Cycle Analysis (LCA)

Nufez-Lopez et al. 2019

EOR+ carbon
neutrality depends on

* CO, source
e External impact

Difficult to achieve



Potential CNCO EOR+ Opportunity

CO, Capture from Ethanol Refineries / | R

~—

* ~40% carbon neutral CO,

* May be cost competitive through incentives
« 45Q
e California Low Carbon Fuel Standard

Ethanol Plants with Capture
® Ethanol Plants without Capture

=== CO, Trunk Pipeline

~ CO, Feeder Pipelines
Ethanol plant production capacity by size of
orange circle from 40 to 350 million gal/yr

Existing CO, Pipelines

State CO2 — EOR Deployment Work Group
Carbon Neutral Crude QOil (CNCO)
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Uses for Associated Gas
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Carbon Neutral Crude Oil (CNCO) Using Natural
Gas-Powered Direct Air Capture (NG-DAC)

 Offsets Scope 3 CO, emissions from crude oil products using otherwise
flared stranded associated gas

* Costs as low as $58/ t CO, when using flared gas
* Costs less than many of the point source captures reported by the NPC

* More expensive than nature-based negative emission technologies, but
e Much smaller land footprint
* More verifiable

* Near breakeven cost through | ,
e 45 Q tax credit ' :.__Q :
* Sale of captured CO, for EOR e B i g o

TEE T ——ry———

Direct Air Capture (DAQ_‘U nit

Keith et al. 2018
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Solution Gas-Oil-Ratios for Large Fields and Plays
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Carbon Neutral Crude Oil

No change in downstream crude oil refining and products use
New jobs requiring petroleum engineering expertise
Avoids petrochemical products dilemma

¥ Does not avoid urban pollution from NO,, SO,, VOCs

Uses stranded associated gas from light crude oil

SPE 201613 Cost Comparison Between Carbon Neutral Fuel

5/13/23 . .
And Alternative Low Carbon Energy Options
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Carbon Neutral Fuel is

NOW

Reliance

Pantheon Tankers



Highlights

e Carbon Neutral Crude Oil (CNCO)
e Carbon Neutral Natural Gas
— better known as Blue Hydrogen



Many Colors of Hydrogen

. Methane Reformin
Electrolysis 5
Without CCS
Renewable Natural Gas With CCS
Energy Produces Solid Carbon

Coal Gasification

Nuclear - Black Coal

cerey il
@ Lignite Coal
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Carbon Neutral Blue Hydrogen

2020 2030

Grey hydrogen Blue hydrogen Green hydrogen

Oz
Natural Green
gas electricity ——
—l
Water Hydrogen Water Hydrogen
~ 1

* - _ Source Gasunie
* Powers upstream production and reforming

with produced blue hydrogen
* Requires half water needed for green hydrogen "



Hydrogen Generation Costs, 2019
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Hydrogen Economy without Fossil Energy

2003 Whitehouse press release

President Bush's $1.2 billion Through partnerships with
hydrogen fuel initiative aims the private sector, the
to reverse America's growing R x ¢ hydrogen fuel initiative and
dependence on foreign oil by Qi Electrolyzer i i i,‘! FreedomCAR will make it
. s | . .
accelerating the W S practical and cost-effective
.. . «‘6\
commercialization of @/ — for large numbers of
hydrogen-powered fuel cells LU s Americans to choose to
to power cars, trucks, homes use clean, hydrogen fuel
and businesses with no cell vehicles by 2020.
pollution or greenhouse
gases.

i
H,0 i
1
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U.S. Energy Consumption by Source and Sector
(Quads), 2020

end-use sector

2020 energy mix is
still 88%
nonrenewable.

SPE 206282 tota = 35.7 quadrion Bt
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Methane Production and CO, and H, Storag
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Arctic sands
100 Tcf

Approx. date first

significant commerciality A b u n d a n Ce Of
Natural Gas
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1000 Tcf
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100 000 Tef
L\ Early Unconventionals (tight gas; shallow shales)

1000 Tef

Emerging Unconventionals (CBM, deep shales)
10000 Tcf
approximate recoverable resources

2030 in-place volumes:
recoverability to be determined

Methane Hydrates
100000 Tcf

Others ?
??? Tef

Boswell et al. 2013




Levelized Cost of Electricity (2019$ / MWh)

Decarbonized Electricity from Natural Gas

Combined Cycle (CC) Electric Power Generation
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NOW
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U.S. CCUS Costs by Point Source in $/tonne CO,
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U.S. CCUS Costs by Point Source in $/tonne CO,
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Carbon Neutral Fuel — Blue H, is




Electric Vehicles (EVs)

Battery electric vehicle (BEV) charging

* 300 miles in ~20 minutes only with
V3 supercharger

e 25 miles in 60 minutes with
common Level 2 charger

Fuel cell electric vehicle (FCEV) refueling
300 miles in 5 minutes

No pollution from an EV 31



Cost Comparison (2/20/2023)

Hydrogen (per GGE) Gasoline (per gallon)*
Blue Grid Regular Mid Premium Diesel
S2.77 $3.92 §2.895 S$3.329 S3.701 S$3.916

AAA 2022
GGE is gallon of gasoline equivalent

*Based on Retailers profit of $0.07/gal

32



For transportation fuel
Cost competitive with gasoline and diesel
J Requires new infrastructure
Quick refueling
No pollution
Potential candidate for air and sea transportation

Cost competitive with decarbonized natural gas power generation for
decarbonized power generation

Less expensive than BAU for peaking power
Avoids NO, pollution



GOSAT Methane Emissions for 2010-2015
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GOSAT Methane Emissions for 2010-2015
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GOSAT Methane Emissions for 2010-2015
Wetlands
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Maasakkers et al. 2021



Electrofuel (E-fuel)

Water (H,0)

Oxygen (0,) [Other H, sources Electrofuel Gasoline (MTG)

Cost range (S/gal)
CO, from combustion TOday 7.52 - 18.71
" 2030 5.29 - 17.49

Power

CO, from air and seawater

Electrolysis

Heat t

H, storage

Hydrogen (H,)

Synthesis reactor Biofuel production <:
Co, Biomass
Electrofuels Biofuels (e.g. CsH100s)

Methane (CH,) DME (CH50CH,) Methanol (CH;0H)
Higher hydrocarbons, e.g. gasoline (CgH ;) Brynolf et al. 2017
Higher alcohols, e.g. ethanol (C,H;OH)

Methanol to gasoline (MTG)

CCUS - Ehlig-Economides & Hatzignatiou 37



Electrofuel process replaces crude oil refining
Minor changes in fuel distribution infrastructure
New jobs requiring petroleum engineering expertise
Avoids urban pollution from SO,, VOCs

J Does not avoid urban pollution from NO,



* Using associated gas for CO, DAC turns flaring into a CNCO
opportunity.

* The petroleum industry has technological leadership in all
aspects related to blue hydrogen generation, supply, and
use, and could lead the energy transition with a blue
hydrogen economy.

* Electrofuel may also be cost competitive, but with different
Incentives.



SUBSURFACE CONSULTANTS

Training Course through Subsurface Consultants & Associates, LLC:
Carbon Capture Utilization and Storage — An Engineering
Perspective

Upcoming Offering: November 06-08, 2023 in Houston, TX
https://scacompanies.com/training/course-listing/carbon-capture-utilization-and-storage-an-engineering-

perspective/
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Thank you — questions?
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