Carbon Neutral Fuel: Leading the Way to Net Zero Greenhouse Gas Emissions

Christine Ehlig-Economides

University of Houston

Highlights

- Carbon Neutral Crude Oil (CNCO)
- Carbon Neutral Natural Gas
- Synthetic fuel

Highlights

- Carbon Neutral Crude Oil (CNCO)
- Carbon Neutral Natural Gas
 - better known as Blue Hydrogen

Hydrocarbon Resource Triangle

Steve Holditch

Definition

Carbon neutral fuel

emits no greenhouse gas (GHG) to the atmosphere by

- Eliminating GHG leaks
- Capturing and storing combustion GHG

Well to Tank Emissions Intensity

IEA. All Rights Reserved

U.S. CCUS Costs in \$/tonne CO₂

Carbon Capture Utilization and Storage (CCUS)

A Sobering Pore Space Reality

EOR+ LCA System Boundaries

EOR+ carbon neutrality depends on

- CO₂ source
- External impact

Difficult to achieve

Nuñez-López et al. 2019

Life Cycle Analysis (LCA)

Potential CNCO EOR+ Opportunity

CO₂ Capture from Ethanol Refineries

- ~ 40% carbon neutral CO₂
- May be cost competitive through incentives
 - 45 Q
 - California Low Carbon Fuel Standard

Ethanol Plants with Capture Ethanol Plants without Capture

Ethanol plant production capacity by size of orange circle from 40 to 350 million gal/yr

State CO2 – EOR Deployment Work Group

Carbon Neutral Crude Oil (CNCO)

Hydrocarbon Resource Triangle

Uses for Associated Gas

Carbon Neutral Crude Oil (CNCO) Using Natural Gas-Powered Direct Air Capture (NG-DAC)

- Offsets Scope 3 CO₂ emissions from crude oil products using otherwise flared stranded associated gas
- Costs as low as $58/t CO_2$ when using flared gas
- Costs less than many of the point source captures reported by the NPC
- More expensive than nature-based negative emission technologies, but
 - Much smaller land footprint
 - More verifiable
- Near breakeven cost through
 - 45 Q tax credit
 - Sale of captured CO₂ for EOR

Keith et al. 2018

URTeC 5437

Solution Gas-Oil-Ratios for Large Fields and Plays

Tight oil has the advantage over big oil!

URTeC 5437

5/13/23

Carbon Neutral Crude Oil

No change in downstream crude oil refining and products use
 New jobs requiring petroleum engineering expertise
 Avoids petrochemical products dilemma
 Does not avoid urban pollution from NO_x, SO_x, VOCs

Uses stranded associated gas from <u>light</u> crude oil

Carbon Neutral Fuel is

US' Occidental supplies first cargo of 'carbonneutral crude' to India's Reliance

SEA PEAR

NOW

Highlights

- Carbon Neutral Crude Oil (CNCO)
- Carbon Neutral Natural Gas
 - better known as Blue Hydrogen

Many Colors of Hydrogen

Carbon Neutral Blue Hydrogen

Hydrogen Generation Costs, 2019

Hydrocarbon Resource Triangle

Hydrogen Economy without Fossil Energy

2003 Whitehouse press release

President Bush's \$1.2 billion hydrogen fuel initiative aims to reverse America's growing dependence on foreign oil by accelerating the commercialization of hydrogen-powered fuel cells to power cars, trucks, homes and businesses with no pollution or greenhouse gases.

Through partnerships with the private sector, the hydrogen fuel initiative and FreedomCAR will make it practical and cost-effective for large numbers of Americans to choose to use clean, hydrogen fuel cell vehicles by 2020.

U.S. Energy Consumption by Source and Sector (Quads), 2020

2020 energy mix is still 88% nonrenewable.

Methane Production and CO₂ and H₂ Storage

Cox et al. 2020

5/13/23

Decarbonized Electricity from Natural Gas

U.S. CCUS Costs by Point Source in \$/tonne CO₂

U.S. CCUS Costs by Point Source in \$/tonne CO₂

Carbon Neutral Fuel – Blue H₂ is

NOW

Electric Vehicles (EVs)

Battery electric vehicle (BEV) charging

- 300 miles in ~20 minutes only with V3 supercharger
- 25 miles in 60 minutes with common Level 2 charger

Fuel cell electric vehicle (FCEV) refueling 300 miles in 5 minutes

No pollution from an EV

Cost Comparison (2/20/2023)

Hydrogen (per GGE)		Gasoline (per gallon)*			
Blue	Grid	Regular	Mid	Premium	Diesel
\$2.77	\$3.92	\$2.895	\$3.329	\$3.701	\$3.916

AAA 2022

GGE is gallon of gasoline equivalent *Based on Retailers profit of \$0.07/gal

Carbon Neutral (Blue) Hydrogen

For transportation fuel

Cost competitive with gasoline and diesel

- Requires new infrastructure
- Quick refueling
- No pollution

Potential candidate for air and sea transportation

Cost competitive with decarbonized natural gas power generation for decarbonized power generation

- Less expensive than BAU for peaking power
- Avoids NO_x pollution

GOSAT Methane Emissions for 2010–2015

GOSAT Methane Emissions for 2010–2015 Wetlands 2 6 8 10 Maasakkers et al. 2021 Methane emissions (Mg a^{-1} km⁻²)

Electrofuel (E-fuel)

CCUS – Ehlig-Economides & Hatzignatiou

Electrofuel

Electrofuel process replaces crude oil refining
Minor changes in fuel distribution infrastructure
New jobs requiring petroleum engineering expertise
Avoids urban pollution from SO_x, VOCs
Does not avoid urban pollution from NO_x

Conclusions

- Using associated gas for CO₂ DAC turns flaring into a CNCO opportunity.
- The petroleum industry has technological leadership in all aspects related to blue hydrogen generation, supply, and use, and could lead the energy transition with a blue hydrogen economy.
- Electrofuel may also be cost competitive, but with different incentives.

Training Course through Subsurface Consultants & Associates, LLC: Carbon Capture Utilization and Storage – An Engineering Perspective

Upcoming Offering: November 06-08, 2023 in Houston, TX https://scacompanies.com/training/course-listing/carbon-capture-utilization-and-storage-an-engineeringperspective/

Presentation References

Slide #	Reference
4	Forrest, J. 2016. Analysis: A Disproportional Emphasis On Upstream Oil And Gas Is Not A Solution For Reducing GHGs. Daily Oil Bulletin.
	https://www.dailyoilbulletin.com/article/2016/11/24/analysis-disproportional-emphasis-upstream-oil-and/
5	Ehlig-Economides, C.A., and de Guzman, N. 2020. Carbon Neutral Fuel and Electrification as Mechanisms for Mitigating Greenhouse Gas Emissions. SPE
	206613.
6	National Petroleum Council 2019. Meeting the Dual Challenge A Roadmap to At-Scale Deployment of Carbon Capture, Use, and Storage.
9	Keith, D. W., Holmes, G., St. Angelo, D., et al. 2018. A Process for Capturing CO ₂ from the Atmosphere: <i>Joule</i> , 2 ,(8) : 1573–1594.
	doi:10.1016/j.joule.2018.05.006.
11	Ehlig-Economides, C. A., 2021, Carbon Neutral Fuel from Light Tight Oil – A Value Proposition: doi:10.15530/urtec-2021-5437.
13-15	Maasakkers, J. D. et al., 2021, 2010-2015 North American methane emissions, sectoral contributions, and trends: A high-resolution inversion of GOSAT
	observations of atmospheric methane: Atmospheric Chemistry and Physics, v. 21, no. 6, p. 4339–4356, doi:10.5194/acp-21-4339-2021
19	Sepulveda, N. A., Jenkins, J. D., de Sisternes, F. J., et al. 2018. The Role of Firm Low-Carbon Electricity Resources in Deep Decarbonization of Power
	Generation: <i>Joule</i> , 2 ,(11) : 2403–2420. doi:10.1016/j.joule.2018.08.006.
21	Bartlett, J., and A. Krupnick, 2020, Decarbonized Hydrogen in the US Power and Industrial Sectors : Identifying and Incentivizing Opportunities to Lower
	Emissions: no. December.
22	Boswell, R., K. Yamamoto, S. R. Lee, T. Collett, P. Kumar, and S. Dallimore, 2013, Methane Hydrates: Elsevier Ltd, 159–178 p., doi:10.1016/B978-0-08-
	099424-6.00008-9.
25-27,29	Zeinali, L., Nikolaou, M., Ehlig-Economides, C. 2021. Enhanced Geothermal System Model for Flow through a Stimulated Rock Volume. SPE 205967

Thank you – questions?

Thanks for your attention.

Christine Ehlig-Economides University of Houston ceconomides@uh.edu